

API 2.0

API 2.0

	Introduction

Bannerbear API Reference

Bannerbear is a service that auto generates images and videos.
	Your designer designs a template in Bannerbear
	We turn it into an API
	You use this API to generate Images and Videos

See examples in Image Examples and Video Examples.

Base URL
https://api.bannerbear.com

Client Libraries
	Ruby
	Node
	PHP

$npm install bannerbear
Node

$composer require yongfook/bannerbear
PHP

$gem install bannerbear
Ruby

Authentication
Bannerbear uses API keys to allow access to the API. You can get an API key by creating a project in Bannerbear.
Bannerbear expects the API key to be included in all API requests to the server in a header that looks like the following:
Authorization: Bearer API_KEY
All API requests on Bannerbear are scoped to a Project.
Project API Key
This key enables you to interact with a specific project via API.
You can find the Project API Key in your Project → Settings page.
Master API Key
You can optionally create a Master API Key which allows higher level access at the account level.
There are two types of Master API Key:
	Limited Access: create and list Projects
	Full Access: create and list Projects as well as interact with any Project (e.g. create Images, Videos etc)

When using a Full Access Master API Key to interact with a Project using any of the standard endpoints below, you must add a project_id parameter to your payload.

Endpoint
	get	/v2/auth

Sample Response
{
 "message": "Authorized",
 "project": "My Project Name"
}

Account
To check your account status at any time you can use this endpoint. It will respond with your quota levels and current usage levels. Usage resets at the start of every month.

Endpoint
	get	/v2/account

Sample Response
{
 "created_at": "2019-10-22T09:49:45.265Z",
 "uid": "jJWBKNELpQPvbX5R93Gk",
 "paid_plan_name": "Bannerbear Automate",
 "api_usage": 391,
 "api_quota": 1000,
 "current_project": {
 "name": "My Project Name",
 "templates": 42,
 }
}

Errors
The Bannerbear API uses the following status / error codes. The Bannerbear API rate limit is 30 requests per 10 seconds.
	202	Accepted -- Your request is has been accepted for processing
	200	OK
	400	Bad Request -- Your request is invalid.
	401	Unauthorized -- Your API key is wrong.
	402	Payment Required -- Your have run out of image and/or video quota.
	404	Not Found -- The specified request could not be found.
	429	Too Many Requests -- Slow down!
	500	Internal Server Error -- We had a problem with our server. Try again later.
	503	Service Unavailable -- We're temporarily offline for maintenance. Please try again later.

Async / Sync
The Bannerbear API is primarily asynchronous. When generating a new image, collection etc you POST a request, the API responds immediately with 202 Accepted and you either receive the generated result via webhook or via polling.
This is the preferred pattern as it keeps the request / response cycle predictable.
However, there is a synchronous option if you would simply like to wait for the response in the initial request.
To make a synchronous request use the synchronous base URL. The API required attributes / parameters function the same as normal. Synchronous requests will wait until the media file has finished generating before responding.
There is a timeout of 10 seconds on synchronous requests. Timeouts respond with a 408 status code.
Another option for synchronous image generation is using the signed URLs feature.

Sync Base URL
https://sync.api.bannerbear.com

Sync Endpoints
	POST	/v2/images
	POST	/v2/collections
	POST	/v2/screenshots

Images
Images are the main resource on Bannerbear.
You generate images by sending a POST request with a template uid and a list of template modifications you want to apply. These modifications can be things like: changing the text, changing the images or changing the colors.
Bannerbear will respond with JPG and PNG (and PDF, if requested) formats of the new Image you have requested.

Endpoints
	post	/v2/images
	get	/v2/images/:uid
	get	/v2/images

The image object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	status stringThe current status of the image; pending, completed or failed.
	self stringThe permalink to this object.
	image_url stringThe final, rendered image url. This will be null to begin with and populates when the image has the status completed
	pdf_url stringUrl to the generated PDF, if render_pdf was set to true.
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "created_at": "2020-02-20T07:59:23.077Z",
 "status": "pending",
 "self": "https://api.bannerbear.com/v2/images/kG39R5XbvPQpLENKBWJj",
 "uid": "kG39R5XbvPQpLENKBWJj",
 "image_url": null,
 "template": "6A37YJe5qNDmpvWKP0",
 "modifications": [
 {
 "name": "title",
 "text": "Lorem ipsum dolor sit amed",
 "color": null,
 "background": null
 },
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/assets/sample_avatar.jpg"
 }
],
 "webhook_url": null,
 "webhook_response_code": null,
 "transparent": false,
 "metadata": null,
 "render_pdf": false,
 "pdf_url": null,
 "width": 1000,
 "height": 1000
}

Create an image
Creating an image on Bannerbear is achieved via this endpoint.
This endpoint responds with 202 Accepted after which your image will be queued to generate. Images are usually rendered within a few seconds. When completed, the status changes to completed.
You can poll the GET endpoint for status updates or use a webhook to get the final image posted to you.
This endpoint supports synchronous generation.
Parameters
	template stringrequiredThe template uid that you want to use.
	modifications listrequiredA list of modifications you want to make.	Child Parameters
	name string requiredThe name of the layer you want to change.
	color stringColor in hex format e.g. "#FF0000".
	Text Container
	text stringReplacement text you want to use.
	background stringBackground color in hex format e.g. "#FF0000".
	background_border_color stringBackground border color in hex format e.g. "#FF0000".
	font_family stringChange the font.
	text_align_h stringHorizontal alignment (left, center, right)
	text_align_v stringVertical alignment (top, center, bottom)		
	font_family_2 stringChange the secondary font.
	color_2 stringChange the secondary font color.
	Image Container
	image_url stringChange the image.
	effect stringChange the effect.
	anchor_x stringChange the anchor point (left, center, right).
	anchor_y stringChange the anchor point (top, center, bottom).
	fill_type stringChange the fill type (fill, fit).
	disable_face_detect booleanSet to true to disable face detect for this request (if the image container is using face detect).
	disable_smart_crop booleanSet to true to disable smart crop for this request (if the image container is using smart crop).
	Bar / Line Chart
	chart_data stringComma-delimited list of numbers to use as data.
	Star Rating
	rating integerNumber from 0 to 100 to use as the rating.
	QR Code
	target stringURL or text to use as the code target.
	Bar Code
	bar_code_data stringText to encode as a bar code.
	Any Layer Type
	gradient listFill with gradient e.g. ["#000", "#FFF"]
	shadow stringAdd a shadow e.g. "5px 5px 0 #CCC"
	border_width integer Width of the object border.
	border_color string Border color in hex format e.g. "#FF0000".
	shift_x integerShift layer along the x axis.
	shift_y integerShift layer along the y axis.
	target stringAdd a clickable link to a URL on this object when rendering a PDF.
	hide booleanSet to true to hide a layer.

	webhook_url stringA url to POST the full Image object to upon rendering completed.
	transparent booleanRender a PNG with a transparent background. Default is false.
	render_pdf booleanRender a PDF. This feature costs 3x quota.
	template_version integerCreate image based on a specific version of the template.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.

	post	/v2/images

Sample Request
var data = {
 "template" : "jJWBKNELpQPvbX5R93Gk",
 "modifications" : [
 {
 "name" : "layer1",
 "text" : "This is my text"
 },
 {
 "name" : "photo",
 "image_url" : "https://www.pathtomyphoto.com/1.jpg"
 }
]
}
fetch('https://api.bannerbear.com/v2/images', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve an image
Retrieves a single Image object referenced by its unique ID.
Parameters
	uid stringrequiredThe image uid that you want to retrieve.

	get	/v2/images/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/images/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all images
Lists images inside a project.
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.
	limit integerquery stringThe API returns 25 items per page by default but you can request up to 100 using this parameter.

	get	/v2/images

Sample Request
fetch('https://api.bannerbear.com/v2/images', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Examples

Create an image with some text and an image from an external server.

Example Request
var data = {
 "template" : YOUR_TEMPLATE_ID,
 "modifications" : [
 {
 "name": "background",
 "image_url": "https://www.bannerbear.com/images/tools/photos/photo-1568096889942-6eedde686635.jpeg"
 },
 {
 "name": "title",
 "text": "This is a title Hello World"
 }
]
}
fetch('https://api.bannerbear.com/images', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Create an image with some text and an image from an external server. Change the font and apply an effect to the background image.

Example Request
var data = {
 "template" : YOUR_TEMPLATE_ID,
 "modifications" : [
 {
 "name": "background",
 "image_url": "https://www.bannerbear.com/images/tools/photos/photo-1517446915321-65e972f1b494.jpeg",
 "effect": "Gaussian Blur"
 },
 {
 "name": "title",
 "text": "This is a title Hello World"
 "font_family": "Montserrat"
 }
]
}
fetch('https://api.bannerbear.com/images', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Create an image with some text and an image from an external server. Activate the secondary font styles set in the template.

Example Request
var data = {
 "template" : YOUR_TEMPLATE_ID,
 "modifications" : [
 {
 "name": "background",
 "image_url": "https://images.unsplash.com/photo-1599974579688-8dbdd335c77f?ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&ixlib=rb-1.2.1&auto=format&fit=crop&w=1671&q=80"
 },
 {
 "name": "title",
 "text": "Like tacos? *We love tacos*"
 }
]
}
fetch('https://api.bannerbear.com/images', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Create a PDF.

Example Request
var data = {
 "template" : YOUR_TEMPLATE_ID,
 "render_pdf" : true,
 "modifications" : [
 {
 "name": "background",
 "image_url": "https://www.bannerbear.com/images/tools/photos/photo-1568096889942-6eedde686635.jpeg"
 },
 {
 "name": "title",
 "text": "This is a title *Hello World*"
 }
]
}
fetch('https://api.bannerbear.com/images', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Videos
Videos are generated from a Video Template.
Bannerbear can generate 3 types of video:
	Overlay a video with a static overlay
	Transcribe a video with auto-transcribed subtitles
	Multi Overlay a video with a slideshow overlay

These are set at the Video Template level.
You generate videos by sending a POST request with a video template uid, a list of template modifications you want to apply, and a media file.
Bannerbear will respond with an MP4 format of the new Video you have requested.

Endpoints
	post	/v2/videos
	get	/v2/videos/:uid
	patch	/v2/videos
	get	/v2/videos

The video object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	status stringThe current status of the video; pending, pending_approval, rendering, completed or failed.
	self stringThe permalink to this object.
	video_url stringThe final, rendered video url. This will be null to begin with and populates when the video has the status completed
	length_in_seconds integerThe measured length in seconds of the input_media_url. Bannerbear will validate the length before rendering videos to prevent going over quota.
	render_type stringThe name of the Build Pack.
	percent_rendered integerThe progress of the video render from 0 to 100.
	transcription listThe transcription for the video line by line. This is populated automatically if you are using Bannerbear's auto-transcription feature.
	gif_preview_url stringA low frame rate gif preview of the final video. Requires setting create_gif_preview to true.
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "input_media_url": "https://www.bannerbear.com/audio/test.m4a",
 "created_at": "2020-09-16T05:30:19.568Z",
 "length_in_seconds": 0,
 "approval_required": true,
 "approved": false,
 "status": "pending",
 "self": "https://api.bannerbear.com/v2/videos/kG39R5XbvPQpLENKBWJj",
 "uid": "kG39R5XbvPQpLENKBWJj",
 "render_type": "overlay",
 "percent_rendered": 0,
 "video_url": null,
 "modifications": [
 {
 "name": "avatar",
 "image_url": "https://cdn.bannerbear.com/sample_images/welcome_bear_photo.jpg"
 }
],
 "frames": null,
 "frame_durations": null,
 "webhook_url": null,
 "webhook_response_code": null,
 "metadata": null,
 "transcription": null,
 "width": 1000,
 "height": 1000,
 "create_gif_preview": false,
 "gif_preview_url": null
}

Create a video
Creating a video on Bannerbear is achieved via this endpoint.
This endpoint responds with 202 Accepted after which your video will be queued to generate. Video rendering time depends on length / complexity of the video. It can vary from a few seconds to a few minutes. When completed, the status changes to completed.
You can poll the GET endpoint for status updates or use a webhook to get the final video posted to you.
Parameters
	video_template stringrequiredThe video template uid that you want to use.
	input_media_url stringFull url to a video or audio file you want to import as the background of the video. You can also use a static image, and the zoom parameter will be set automatically. This is required depending on the build pack of the template you are using:	Build Pack
	Overlay input_media_url is required
	Transcribe input_media_url is required
	Multi Overlay input_media_url is optional

	modifications listA list of modifications you want to make. See Create an image for more details on the child parameters. Unlike an Image the modifications list is not always required for a Video.
	zoom stringApply a panning zoom effect to the video or image, can be one of: center, top, right, bottom, left.
	zoom_factor floatAmount to zoom in by from 1 to 100. If zoom is set and zoom_factor is left blank, this will default to 10.
	blur integerApply a blur filter (from 1 to 10) to the incoming video.
	trim_start_time stringTrim the input_media_url clip to a specific start point, using HH:MM:SS notation.
	trim_end_time stringTrim the input_media_url clip to a specific end point, using HH:MM:SS notation.
	trim_to_length_in_seconds integerForce trim the end video to a specific time. There are two ways to trim videos, either you use trim_to_length_in_seconds to trim from the start point by specifying a desired length.
Or you can use trim_start_time and trim_end_time to specify a part of the video / audio to be used.
	webhook_url stringA url to POST the full Video object to upon rendering completed.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.
	frames listApplies only to videos using the Multi Overlay build pack. A list of modifications lists, each one representing a single graphic overlay on the video.
	frame_durations listApplies only to videos using the Multi Overlay build pack. Custom durations for each frame. When not specified, frames will be spread evenly across the video.
	create_gif_preview booleanSet to true to create a short animated gif preview in addition to the final mp4.

	post	/v2/videos

Sample Request
//add a simple text overlay to a video
var data = {
 "video_template" : "9JWBASDKLpQPvbX5R93Gk",
 "input_media_url": "https://www.bannerbear.com/my/video.mp4",
 "modifications" : [
 {
 "name" : "layer1",
 "text" : "This is my text"
 }
]
}
fetch('https://api.bannerbear.com/v2/videos', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a video
Parameters
	uid stringrequiredThe video uid that you want to retrieve.	

	get	/v2/videos/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/videos/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Update a video
Parameters
	uid stringrequiredThe video uid that you want to update.
	transcription listA replacement transcription containing your corrected / edited text. Note that each element of the transcription array represents a specific timestamp. For that reason, the number of lines of your patched text must match the original. Bannerbear will not update the record if the number is different. Editing transcriptions is meant for minor corrections, not making major changes.
	approved booleanSet to true to approve the video and start the rendering process.

	patch	/v2/videos

Sample Request
//update a transcription and begin rendering
var data = {
 "uid": "ASDKLpQPvbX",
 "transcription" : [
 "This is a replacement for line 1",
 "and this is a replacement for line 2"
],
 "approved" : true
}
fetch(`https://api.bannerbear.com/v2/videos`, {
 method: 'PATCH',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all videos
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/videos

Sample Request
fetch('https://api.bannerbear.com/v2/videos', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Examples

Click to Play

Create a video using the Overlay build pack with some text, image and background video from an external server.

Example Request
var data = {
 "video_template" : YOUR_TEMPLATE_ID,
 "input_media_url": "https://www.bannerbear.com/video/landscape_short.mp4",
 "modifications" : [
 {
 "name": "subtitle",
 "text": "Lorem ipsum"
 },
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/images/tools/people/51.jpg"
 }
]
}
fetch('https://api.bannerbear.com/videos', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Click to Play

Create a video using the Transcribe build pack with an image and background video from an external server. The audio is transcribed automatically by Bannerbear.

Example Request
var data = {
 "video_template" : YOUR_TEMPLATE_ID,
 "input_media_url": "https://www.bannerbear.com/video/landscape_short.mp4",
 "modifications" : [
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/images/tools/people/82.jpg"
 }
]
}
fetch('https://api.bannerbear.com/videos', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Click to Play

Create a video using the Multi Overlay build pack with some text, image and background video from an external server.

Example Request
var data = {
 "video_template" : YOUR_TEMPLATE_ID,
 "input_media_url": "https://www.bannerbear.com/video/landscape_short.mp4",
 "frames": [
 [
 {
 "name": "subtitle",
 "text": "This is frame one..."
 },
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/images/tools/people/51.jpg"
 }
],
 [
 {
 "name": "subtitle",
 "text": "This is frame two!"
 },
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/images/tools/people/82.jpg"
 }
]
]
}
fetch('https://api.bannerbear.com/videos', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Click to Play

Create a video using the Multi Overlay build pack with some text and images, with no background video. This is essentially a video slideshow.

Example Request
var data = {
 "video_template" : YOUR_TEMPLATE_ID,
 "frames": [
 [
 {
 "name": "subtitle",
 "text": "This is the 1st frame"
 },
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/images/tools/people/82.jpg"
 }
],
 [
 {
 "name": "subtitle",
 "text": "This is the 2nd frame, how's it going?"
 },
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/images/tools/people/82.jpg"
 }
],
 [
 {
 "name": "subtitle",
 "text": "This is the last frame, goodbye! 🐻"
 },
 {
 "name": "avatar",
 "image_url": "https://www.bannerbear.com/images/tools/people/82.jpg"
 }
]
]
}
fetch('https://api.bannerbear.com/videos', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Collections
Sometimes you want to use the same data payload but push to multiple templates at once.
In Bannerbear, you can do this by grouping templates together in a Template Set. Pushing data to a Template Set results in a response that includes multiple images (depending on how many templates were in your set).
This multi-image object is known as a Collection.

Endpoints
	post	/v2/collections
	get	/v2/collections/:uid
	get	/v2/collections

The collection object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	status stringThe current status of the collection; pending, completed or failed.
	self stringThe permalink to this object.
	image_urls objectAn object of final, rendered image urls. This will be null to begin with and populates when the collection has the status completed
	images listAn array of the full Image objects in this collection.
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "created_at": "2020-07-31 04:28:32 UTC",
 "uid": "rZdpMYmAnDB1zb3kXL",
 "self": "https://api.bannerbear.com/v2/collections/rZdpMYmAnDB1zb3kXL",
 "template_set": "Dbl5xYVgKRzLwaNdqo",
 "status": "completed",
 "modifications": [
 {
 "name": "text_container",
 "text": "Hello World"
 }
],
 "webhook_url": null,
 "webhook_response_code": null,
 "transparent": false,
 "metadata": null,
 "image_urls": {
 "template_EagXkA3DwM1ZW2VBYw_image_url": "https://cdn.bannerbear.com/...",
 "template_197xPQmDnLqZG3E82Y_image_url": "https://cdn.bannerbear.com/..."
 },
 "images": [
 //array of Image objects
]
}

Create a collection
Creating a collection on Bannerbear is achieved via this endpoint and behaves the same as creating a single Image except with a different response.
This endpoint responds with 202 Accepted after which your collection will be queued to generate. Collections are usually rendered within a few seconds. When completed, the status changes to completed.
You can poll the GET endpoint for status updates or use a webhook to get the final video posted to you.
This endpoint supports synchronous generation.
Parameters
	template_set stringrequiredThe template set uid that you want to use.
	modifications listrequiredA list of modifications you want to make. See Create an image for more details on the child parameters.
	webhook_url stringA url to POST the full Collection object to upon rendering completed.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.
	transparent booleanRender the collection with a transparent background. Default is false.

	post	/v2/collections

Sample Request
var data = {
 "template_set" : "LXk3bz1BDnAmYMpdZr",
 "modifications" : [
 {
 "name" : "layer1",
 "text" : "This is my text"
 },
 {
 "name" : "photo",
 "image_url" : "https://www.pathtomyphoto.com/1.jpg"
 }
]
}
fetch('https://api.bannerbear.com/v2/collections', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a collection
Parameters
	uid stringrequiredThe collection uid that you want to retrieve.

	get	/v2/collections/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/collections/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all collections
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/collections

Sample Request
fetch('https://api.bannerbear.com/v2/collections', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Animated Gifs
Animated Gifs on Bannerbear take the form of simple slideshows. You can add multiple frames, control the duration of individual frames, control the number of loops and more.

Endpoints
	post	/v2/animated_gifs
	get	/v2/animated_gifs/:uid
	get	/v2/animated_gifs

The animated gif object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	self stringThe permalink to this object.
	image_url stringThe final, rendered image url. This will be null to begin with and populates when the image has the status completed
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "created_at": "2020-12-02T05:35:57.364Z",
 "uid": "a46YPx8Z65pwmKrdGE",
 "self": "https://api.bannerbear.com/v2/animated_gifs/a46YPx8Z65pwmKrdGE",
 "template": "1eGqK9b33PxbnaYpP8",
 "status": "pending",
 "input_media_url": null,
 "frames": [
 [], //list of modifications
 [], //list of modifications
 [] //list of modifications
],
 "fps": 1,
 "frame_durations": null,
 "loop": true,
 "image_url": null,
 "webhook_url": null,
 "webhook_response_code": null,
 "metadata": null
}

Create an animated gif
This endpoint responds with 202 Accepted after which your animated gif will be queued to generate. Animated gifs are usually rendered within a few seconds. When completed, the status changes to completed.
You can poll the GET endpoint for status updates or use a webhook to get the final animated gif posted to you.
Parameters
	template stringrequiredThe template uid that you want to use.
	frames listrequiredA list of modifications lists to apply in sequence. See Create an image for more details on the child parameters. Animated Gifs can have a maximum of 30 frames.
	input_media_url stringAn optional movie file that can be used as part of the gif. Depending on the number of frames you pass in, Bannerbear will generate thumbnails of this movie and place them sequentially into an image container in your template named video_frame.
	fps integerSet the frame rate of gif (default is 1 frame per second).
	frame_durations listCustom durations for each frame (overrides fps).
	loop booleanSet the gif to loop or only play once.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.
	webhook_url stringA url to POST the full Animated Gif object to upon rendering completed.

	post	/v2/animated_gifs

Sample Request
var data = {
 "template" : "1eGqK9b33PxbnaYpP8",
 "frames" : [
 [//frame 1 starts here
 {
 "name" : "layer1",
 "text" : "This is my text"
 },
 {
 "name" : "photo",
 "image_url" : "https://www.pathtomyphoto.com/1.jpg"
 }
],
 [//frame 2 starts here
 {
 "name" : "layer1",
 "text" : "This is my follow up text"
 },
 {
 "name" : "photo",
 "image_url" : "https://www.pathtomyphoto.com/2.jpg"
 }
]
]
}
fetch('https://api.bannerbear.com/v2/animated_gifs', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve an animated gif
Parameters
	uid stringrequiredThe animated gif uid that you want to retrieve.

	get	/v2/animated_gifs/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/animated_gifs/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all animated gifs
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/animated_gifs

Sample Request
fetch('https://api.bannerbear.com/v2/animated_gifs', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Screenshots
The Bannerbear API includes a screenshot tool if you need to capture screenshots of public webpages.
This endpoint supports synchronous generation.

Endpoints
	post	/v2/screenshots
	get	/v2/screenshots/:uid
	get	/v2/screenshots

The screenshot object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	status stringThe current status of the image; pending, completed or failed.
	self stringThe permalink to this object.
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "url": "https://www.apple.com",
 "width": 1200,
 "height": 3000,
 "created_at": "2021-01-05T06:54:52.912Z",
 "mobile": false,
 "self": "https://api.bannerbear.com/v2/screenshots/xwbeAQqO70Y3oyd2WY",
 "uid": "xwbeAQqO70Y3oyd2WY",
 "screenshot_image_url": null,
 "webhook_url": null,
 "webhook_response_code": null,
 "status": "pending"
}

Create a screenshot
This endpoint responds with 202 Accepted after which your screenshot will be queued to generate. Screenshots are usually rendered within a few seconds. When completed, the status changes to completed.
You can poll the GET endpoint for status updates or use a webhook to get the final screenshot posted to you.
Parameters
	url stringrequiredThe website you want to screenshot.
	width integerScreenshot browser width, defaults to 1200 if not set.
	height integerScreenshot browser height, defaults to full page if not set.
	mobile booleanUse mobile user agent. Default is false.		
	language stringSet the browser language using a two-letter ISO 639-1 code. Only languages using Latin, Japanese, Korean, Chinese and Thai alphabets are supported.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.
	webhook_url stringA url to POST the full Screenshot object to upon rendering completed.

	post	/v2/screenshots

Sample Request
var data = {
 "url" : "https://www.apple.com"
}
fetch('https://api.bannerbear.com/v2/screenshots', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a screenshot
Parameters
	uid stringrequiredThe screenshot uid that you want to retrieve.

	get	/v2/screenshots/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/screenshots/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all screenshots
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/screenshots

Sample Request
fetch('https://api.bannerbear.com/v2/screenshots', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Templates
Templates are the reusable designs that you create in the Bannerbear editor. You can list a project's templates via the API.
You can design a template using the Bannerbear template editor, or you can add one from the template library (and modify it as needed).
Every template has a list of modifications available, for example text boxes that you can populate with different text, or image placeholders that you can replace with different images.

Endpoints
	post	/v2/templates
	post	/v2/templates?source=:uid
	get	/v2/templates/:uid
	patch	/v2/templates/:uid
	get	/v2/templates
	post	/v2/templates/import

The template object
Attributes
	uid stringThe unique ID for this object.
	name stringThe name of this template.
	self stringThe permalink to this object.
	preview_url stringA thumbnail of the latest version of the template.
	available_modifications listA list of available modifications.
	tags listAn array of tags for this template.

Sample Object
{
 "created_at": "2020-03-17T01:58:07.358Z",
 "name": "Twitter Demo",
 "self": "https://api.bannerbear.com/v2/templates/04PK8K2bctXHjqB97O",
 "uid": "04PK8K2bctXHjqB97O",
 "preview_url": null,
 "width": 1000,
 "height": 1000,
 "available_modifications": [
 {
 "name": "avatar",
 "image_url": null
 },
 {
 "name": "name",
 "text": null
 },
 {
 "name": "handle",
 "text": null
 },
 {
 "name": "body",
 "text": null
 }
],
 "tags": [
 "shoes",
 "instagram"
]
}

Create a template
This endpoint allows you create blank templates, which you can then use with the Sessions API to provide your users a blank canvas plus editor environment to design their own templates from scratch.
Parameters
	name stringrequiredThe name of the new blank template.
	width integerrequiredThe width of the new blank template.
	height integerrequiredThe height of the new blank template.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.
	tags listAn array of tags for this template.

	post	/v2/templates

Sample Request
var data = {
 "name" : "My Template",
 "width": 1000,
 "height": 900
}
fetch('https://api.bannerbear.com/v2/templates', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Duplicate a template
You can duplicate templates with this endpoint, which is useful if you are using the Sessions API. Let your users select templates from your custom library, then duplicate the template and create a Session so that they can customize it.
Parameters
	uid stringquery stringThe uid of the template you want to duplicate (must be from the same Project).

	post	/v2/templates?source=:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/templates?source=${UID}`, {
 method: 'POST',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a template
Parameters
	uid stringrequiredThe template uid that you want to retrieve.
	extended booleanquery stringSet to true to return an extended response including current layer defaults.

	get	/v2/templates/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/templates/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Update a template
You can edit some basic attributes of a Template via the API.
Parameters
	name stringThe name of the template.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.
	tags listAn array of tags for this template.

	patch	/v2/templates/:uid

Sample Request
var data = {
 "tags" : [
 "Tag1",
 "Tag2"
],
 "name" : "My template"
}
fetch(`https://api.bannerbear.com/v2/templates/${UID}`, {
 method: 'PATCH',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all templates
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.
	tag stringquery stringList items only with this tag.
	limit integerquery stringThe API returns 25 items per page by default but you can request up to 100 using this parameter.
	name stringquery stringList items that partially match this name.
	extended booleanquery stringSet to true to return an extended response including current layer defaults.

	get	/v2/templates

Sample Request
fetch('https://api.bannerbear.com/v2/templates', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Import templates
You can import templates to a project from the public library, or any templates that have been shared publicly in your account or other accounts.
The parameters in this request should be Publication IDs. These are the IDs of publicly-available templates either from the library or shared by other users. This request will not work with private template IDs.
This endpoint does not attempt to de-dupe, if you call it twice with the same payload, templates will be imported twice.
If you are looking for a JSON feed of all templates (publications) in the Bannerbear template library, you can find that here.
Parameters
	publications listrequiredAn array of Publication IDs to import into this project.

	post	/v2/templates/import

Sample Request
var data = {
 "publications" : [
 "ao9gyzedjlb3bw0j7m",
 "ewmqrbyd5vqoj9xz7z"
]
}
fetch(`https://api.bannerbear.com/v2/templates/import`, {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Template Sets
Templates Sets are sets of Templates that you group together in the Bannerbear dashboard. You can create, modify and list a project's template sets via the API.

Endpoints
	post	/v2/template_sets
	patch	/v2/template_sets/:uid
	get	/v2/template_sets/:uid
	get	/v2/template_sets

The template set object
Attributes
	uid stringThe unique ID for this object.
	name stringThe name of this template set.
	self stringThe permalink to this object.
	available_modifications listA list of available modifications.
	templates listA list of templates inside this set.

Sample Object
{
 "name": "My Template Set",
 "created_at": "2020-11-11T02:48:54.472Z",
 "self": "http://api.bannerbear.com/v2/template_sets/VymBYa7gMjW6JQ2njM",
 "uid": "VymBYa7gMjW6JQ2njM",
 "available_modifications": [
 {
 "name": "tweet",
 "text": null,
 "color": null,
 "background": null
 },
 {
 "name": "avatar",
 "image_url": null
 },
 {
 "name": "name",
 "text": null,
 "color": null,
 "background": null
 }
],
 "templates": [
 //array of Template objects
]
}

Create a template set
Parameters
	name string A name for this template set.
	templates list requiredA list of template UIDs to add to this template set.

	post	/v2/template_sets

Sample Request
var data = {
 "name": "My Template Set",
 "templates": [
 "p4KnlWBbK1V5OQGgm1",
 "r6anBGWDA1EDO38124",
 "RPowdyxbdM8ZlYBAgQ",
],
}
fetch('https://api.bannerbear.com/v2/template_sets', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Update a template set
Parameters
	name string A name for this template set.
	templates list requiredAn updated list of template UIDs to include in this template set. When using the PATCH operation the template set will be cleared first and the new list of templates applied. This allows for removing templates and adding templates depending on your array of UIDs.

	patch	/v2/template_sets/:uid

Sample Request
var data = {
 "templates": [
 "p4KnlWBbK1V5OQGgm1",
 "r6anBGWDA1EDO38124"
],
}
fetch(`https://api.bannerbear.com/v2/template_sets/${UID}`, {
 method: 'PATCH',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a template set
Parameters
	uid stringrequiredThe template set uid that you want to retrieve.
	extended booleanquery stringSet to true to return an extended response including current layer defaults.

	get	/v2/template_sets/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/template_sets/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all template sets
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.
	extended booleanquery stringSet to true to return an extended response including current layer defaults.

	get	/v2/template_sets

Sample Request
fetch('https://api.bannerbear.com/v2/template_sets', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Video Templates
Video Templates are a subset of Templates.
Templates for Images hold design / layout information - as would be required to render Images.
Video Templates simply hold some extra instructions, telling Bannerbear what kind of video to render.
These are called Build Packs and there are 3 types:
	Overlay a video with a static overlay
	Transcribe a video with auto-transcribed subtitles
	Multi Overlay a video with a slideshow overlay

Endpoints
	post	/v2/video_templates
	get	/v2/video_templates/:uid
	get	/v2/video_templates

The video template object
Attributes
	uid stringThe unique ID for this object.
	name stringThe name of this video template.
	self stringThe permalink to this object.
	render_type stringThe name of the Build Pack.
	approval_required booleanWhether videos under this template require approval before rendering proceeds. This setting can be changed in the video template Build Pack settings.
	preview_url stringA thumbnail of the latest version of the template.
	available_modifications listA list of available modifications.

Sample Object
{
 "created_at": "2020-09-15T05:21:22.066Z",
 "self": "http://api.bannerbear.com/v2/video_templates/GL4kqNvzJ09lYxgVdO",
 "uid": "GL4kqNvzJ09lYxgVdO",
 "name": "Quote Example",
 "width": 1000,
 "height": 1000,
 "approval_required": true,
 "preview_url": null,
 "render_type": "transcribe",
 "available_modifications": [
 {
 "name": "avatar",
 "image_url": null
 },
 {
 "name": "name",
 "text": null,
 "color": null,
 "background": null
 },
 {
 "name": "subtitle",
 "text": null,
 "color": null,
 "background": null
 }
]
}

Create a video template
Parameters
	template string requiredThe image template on which to base this video template.
	render_type string requiredThe Build Pack to use: overlay, transcribe, or multi_overlay
	approval_required boolean Whether to require approval before rendering (only applies to the transcribe Build Pack)
	transcription_layer_name string Text layer for transcriptions (only applies to the transcribe Build Pack)

	post	/v2/video_templates

Sample Request
var data = {
 "template": "p4KnlWBbK1V5OQGgm1",
 "render_type": "overlay"
}
fetch('https://api.bannerbear.com/v2/video_templates', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a video template
Parameters
	uid stringrequiredThe video template uid that you want to retrieve.

	get	/v2/video_templates/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/video_templates/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all video templates
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/video_templates

Sample Request
fetch('https://api.bannerbear.com/v2/video_templates', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Sessions
Sessions provide your users with access to the Bannerbear template editor. When you create a Session you will receive a session_editor_url which provides secure, expiring access to the Bannerbear template editor for a specific template. This link can be used by your user, even if they are not a Bannerbear member.
Preview Mode
You can create a read-only preview mode with no editor tools using the parameter {preview_mode: true}.
By appending a base64-encoded query string of modifications to the session_editor_url in Preview Mode you can preview template modifications to your users. See embedding the template editor on the knowledge base.

Endpoints
	post	/v2/sessions
	get	/v2/sessions/:uid
	get	/v2/sessions

The session object
Attributes
	uid stringThe unique ID for this object.
	self stringThe permalink to this object.
	session_editor_url stringThe editor url for this session. Once accessed this can only be accessed by that same user (identified by browser) for 2 hours, after which it expires.
	expired booleanWhether this Session has expired. Once expired, the session_editor_url becomes inactive.

Sample Object
{
 "session_started_at": null,
 "created_at": "2022-10-27T07:27:41.092Z",
 "self": "https://api.bannerbear.com/v2/sessions/rpdmzYDgW0o9GEwJA5",
 "uid": "rpdmzYDgW0o9GEwJA5",
 "session_editor_url": "https://app.bannerbear.com/session/zda8di132nxbOTL09qjH13vBwwtt",
 "metadata": null,
 "expired": false,
 "preview_mode": null,
 "template": "j14WwV5VQ0jvZa7XrB",
 "width": 1200,
 "height": 630
}

Create a session
Parameters
	template stringrequiredThe template uid you want to create a Session for.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.
	mode stringStart the session in one of three modes. default allows all template options. limited allows editing of template layers but not deleting or adding new layers. preview is a read-only mode.
	custom_fonts listSpecify a list of custom fonts to show in the Session editor. The default is to show all custom fonts that are available in the account.

	post	/v2/sessions

Sample Request
var data = {
 "template" : "j14WwV5VQ0jvZa7XrB"
}
fetch('https://api.bannerbear.com/v2/sessions', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a session
Parameters
	uid stringrequiredThe session uid that you want to retrieve.

	get	/v2/sessions/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/sessions/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all sessions
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/sessions

Sample Request
fetch('https://api.bannerbear.com/v2/sessions', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Webhooks
Webhooks are used in Bannerbear to notify your system of when assets are generated.
Bannerbear features two methods to set webhooks. The first method is to pass a webhook_url parameter when generating an Image, Collection, Video etc.
The second method is to set Project-level webhooks that will fire for all events of a specific type within your project. You can register these Project-level webhooks via the Project > Advanced Settings page, or via this API endpoint.

Endpoints
	post	/v2/webhooks
	get	/v2/webhooks/:uid
	delete	/v2/webhooks/:uid

The webhook object
Attributes
	uid stringThe unique ID for this object.
	self stringThe permalink to this object.
	url stringThe external webhook url.
	event stringThe event type that this webhook will fire on.

Sample Object
{
 "url": "https://webhook.site/76d4c2ce-5cbf-4f75-a32f-c8e2182ff0bb",
 "event": "image_created",
 "created_at": "2022-03-21T03:51:06.469Z",
 "uid": "QXYlGg4rbAJE5ZoDkm",
 "self": "https://api.bannerbear.com/v2/webhooks/QXYlGg4rbAJE5ZoDkm"
}

Create a webhook
Parameters
	url stringrequiredThe external webhook receiver URL you want to register.
	event stringrequiredThe event type to register this URL to. Options are: template_created, template_edited, image_created, collection_created, video_created, animated_gif_created, movie_created, screenshot_created

	post	/v2/webhooks

Sample Request
var data = {
 "url" : "https://webhook.site/76d4c2ce-5cbf-4f75-a32f-c8e2182ff0bb",
 "event": "image_created"
}
fetch('https://api.bannerbear.com/v2/webhooks', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a webhook
Parameters
	uid stringrequiredThe webhook uid that you want to retrieve.

	get	/v2/webhooks/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/webhooks/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Delete a webhook
Parameters
	uid stringrequiredThe webhook uid that you want to delete.

	delete	/v2/webhooks/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/webhooks/${UID}`, {
 method: 'DELETE',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Movies
A Movie is a series of Video clips joined together in sequence, using optional transitions, into a single MP4 file. Bannerbear handles the cropping and encoding of files automatically.
An example use case for a Movie is when your business has videos with a consistent intro and outro, and you want to place dynamically-generated Video content from the Bannerbear /videos endpoint between them.
Another use case for a Movie is when you want to join static images together in an MP4 slideshow with transitions.

Endpoints
	post	/v2/movies
	get	/v2/movies/:uid
	get	/v2/movies

The movie object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	status stringThe current status of the movie; pending, rendering, completed or failed.
	self stringThe permalink to this object.
	percent_rendered integerThe progress of the movie render from 0 to 100.
	total_length_in_seconds integerThe final length of the combined movie file.
	movie_url stringThe final, rendered movie url. This will be null to begin with and populates when the movie has the status completed
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "created_at": "2020-02-20T07:59:23.077Z",
 "status": "pending",
 "self": "https://api.bannerbear.com/v2/images/9R5XbvPQkG3pLENKBWJj",
 "uid": "9R5XbvPQkG3pLENKBWJj",
 "width": 800,
 "height": 500,
 "percent_rendered": 0,
 "total_length_in_seconds": null,
 "transition": "fade",
 "soundtrack_url": null,
 "inputs": [
 {
 "asset_url": "https://externalhost.com/assets/intro.mp4"
 },
 {
 "asset_url": "https://cdn.bannerbear.com/videos/123kjh918u2313.mp4",
 "trim_to_length_in_seconds": 10,
 "mute": true
 },
 {
 "asset_url": "https://externalhost.com/assets/outro.mp4"
 }
],
 "movie_url": null,
 "webhook_url": null,
 "webhook_response_code": null,
 "metadata": null
}

Create a movie
You can combine up to 10 video clips into a movie. Video clips should be listed chronologically in the inputs parameter.
Instead of a video clip you can also use a static image url in the asset_url parameter. When using a static image, it will be shown for 5 seconds by default in the final movie. You can change this using the trim_to_length_in_seconds parameter.
Parameters
	width integerrequiredThe desired width of your movie. Bannerbear will crop / scale your input clips to fit this width.
	height integerrequiredThe desired height of your movie. Bannerbear will crop / scale your input clips to fit this height.
	inputs listrequiredA list of videos (or images) you want to combine into a movie.	Child Parameters: Video
	asset_url stringURL to a video file. This can be a Bannerbear video or an externally-hosted video. It can also be a static image url.
	trim_to_length_in_seconds integerForce trim the end video to a specific time.
	mute booleanRemove the sound from this video clip.
	soundtrack_url stringURL to an audio file to overlay on top of this clip.

	transition stringThe name of the transition you want to use between video clips. Current options are: fade, pixelize, slidedown, slideright, slideup, slideleft.
	soundtrack_url stringURL to an audio file to overlay on top of the movie.
	webhook_url stringA url to POST the full Movie object to upon rendering completed.
	metadata stringAny metadata that you need to store e.g. ID of a record in your DB.

	post	/v2/movies

Sample Request
var data = {
 "width" : 800,
 "height" : 500,
 "transition" : "fade",
 "soundtrack_url" : "https://externalhost.com/assets/music.mp3",
 "inputs" : [
 {
 "asset_url": "https://externalhost.com/assets/intro.mp4"
 },
 {
 "asset_url": "https://cdn.bannerbear.com/videos/123kjh918u2313.mp4",
 "trim_to_length_in_seconds": 10,
 "mute": true
 },
 {
 "asset_url": "https://externalhost.com/assets/outro.mp4"
 }
]
}
fetch('https://api.bannerbear.com/v2/movies', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a movie
Parameters
	uid stringrequiredThe movie uid that you want to retrieve.				

	get	/v2/movies/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/movies/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all movies
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/movies

Sample Request

Examples

Click to Play

Create a movie by combining still images and video with a transition

Example Request
var data = {
 "width": 1200,
 "height": 670,
 "transition": "fade",
 "inputs": [
 {
 "asset_url": "https://images.bannerbear.com/requests/images/004/702/393/original/55480c60b5ac6d977fdf5076bd29136908f52505.png",
 "trim_to_length_in_seconds": 3
 },
 {
 "asset_url": "https://videos.bannerbear.com/completed/movie-x62aV0wjW0LKOYkm1X.mp4"
 },
 {
 "asset_url": "https://images.bannerbear.com/requests/images/004/702/433/original/a6f4d342cb4241350527ca6ab2e7a21226c288d6.png",
 "trim_to_length_in_seconds": 3
 }
]
}
fetch('https://api.bannerbear.com/movies', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Fonts
Fonts are set at the template level in Bannerbear. When you design a template and create a text box, you choose a font for that text box. So it is not necessary to set fonts when creating images via the API, as the defaults will be used.
However, if you wish you can change fonts in your images on-the-fly when creating an image by adding a font_family parameter and the name of a valid font.
If you use an invalid font name when creating an image, the template default font will be used.
This endpoint simply returns a list of valid fonts.

Endpoint
	get	/v2/fonts

Sample Response
{
 "Serif": [
 "Abril Fatface",
 "Alegreya",
 "Arvo",
 "BioRhyme",
 "Corben",
 "Cormorant",
 "Courier Prime",
 "Coustard",
 "DM Serif Display",
 "Eczar",
 "Frank Ruhl Libre",
 "Gravitas One",
 "IBM Plex Serif",
 "Jomolhari",
 "Libre Baskerville",
 "Lora",
 "Merriweather",
 "Neuton",
 "Noto Serif",
 "Old Standard TT",
 "PT Serif",
 "Playfair Display",
 "Prata",
 "Source Serif Pro",
 "Spectral",
 "Vollkorn"
],
 "Sans Serif": [
 "Alegreya Sans",
 "Anton",
 "Archivo",
 "Archivo Narrow",
 "Cabin",
 "Catamaran",
 "Chivo",
 "Fira Sans",
 "IBM Plex Sans",
 "Karla",
 "Lato",
 "Libre Franklin",
 "Montserrat",
 "Muli",
 "Noto Sans",
 "Nunito",
 "Open Sans",
 "Oswald",
 "Oxygen",
 "PT Sans",
 "Pontano Sans",
 "Poppins",
 "Puritan",
 "Raleway",
 "Roboto",
 "Source Sans Pro",
 "Space Mono",
 "Titillium Web",
 "Ubuntu",
 "Varela",
 "Work Sans"
],
 "Novelty": [
 "Caveat",
 "Courgette",
 "Delius",
 "Kalam",
 "Merienda",
 "Patrick Hand",
 "Permanent Marker",
 "Press Start 2P",
 "Satisfy",
 "VT323"
],
 "International": [
 "Noto Sans SC",
 "Noto Sans TC",
 "Noto Sans JP",
 "Noto Sans KR"
],
 "Custom": [
 "bb_custom_font_2cd55546-ec00-4af9-aeca-4a3cd186da53_otf"
]
}

Effects
Bannerbear has a number of built-in effects that you can apply to image containers at the template level.
However, you can also set these on-the-fly when you make Image API requests using the effect property.
This is useful if you need to make multiple variations from a template, but use different effects in each one.
This endpoint simply returns a list of valid effects.

Endpoint
	get	/v2/effects

Sample Response
[
 "Smart Crop",
 "Grayscale",
 "Sepia",
 "Gaussian Blur",
 "Grayscale + Gaussian Blur",
 "Flip Horizontal",
 "Flip Vertical",
 "Negate",
 "Gameboy",
 "16bit"
]

Diagnoses
Sometimes an image you generate on Bannerbear may not turn out as expected.
The most common problem is with imported images, which is the current focus for this diagnostic tool.
An imported image may be missing at the origin, or blocking Bannerbear access etc. This is usually due to permissions, file formats etc, but it can be tedious to track down the root cause.
This endpoint helps you isolate the problem, given an Image ID.
When you create a Diagnosis, Bannerbear will run through a series of checks on the data in the Image you have requested the diagnosis for. You will then receive a report with issues and suggested fixes.
The subtle difference between the singular Diagnosis and plural Diagnoses is easy to miss. Ensure you use the right spelling when using this endpoint.

Endpoints
	post	/v2/diagnoses
	get	/v2/diagnoses/:uid

The diagnosis object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	type stringThe parent object type
	parent_uid stringThe parent object unique ID
	status stringThe current status of the diagnosis; pending or completed.
	report objectA categorized report of issues with your Image. For now the only category is external_images which lists your image_urls and displays any issues Bannebear had with accessing them.

Sample Object
{
 "uid": "KqePQDVvDXZwgNz2oJ",
 "type": "Image",
 "parent_uid": "kG39R5XbvPQpLENKBWJj",
 "self": "https://api.bannerbear.com/v2/diagnoses/KqePQDVvDXZwgNz2oJ",
 "status": "completed",
 "report": {
 "external_images": [
 {
 "image_url": "https://externalhost.com/assets/sample_avatar.jpg",
 "result": "success",
 "comment": null,
 },
 {
 "image_url": "https://externalhost.io/assets/ads123da.jpg",
 "result": "fail",
 "comment": "404 Not Found",
 }
]
 }
}

Create a diagnosis
This endpoint responds with 202 Accepted after which your report will be queued to generate.
When completed, the status changes to completed.
Use the GET endpoint to retrieve the final report.
Parameters
	image_uid stringrequiredThe Image uid that you would like to run a diagnostic on. Currently this endpoint only supports Image uids.

	post	/v2/diagnoses

Sample Request
//create a report for Image UID kG39R5XbvPQpLENKBWJj
var data = {
 "image_uid" : "kG39R5XbvPQpLENKBWJj"
}
fetch('https://api.bannerbear.com/v2/diagnoses', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a diagnosis
Parameters
	uid stringrequiredThe diagnosis uid that you want to retrieve.

	get	/v2/diagnoses/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/diagnoses/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Signed Bases
Bannerbear has a Signed URL feature which allows on-demand generation of images using encrypted URL parameters.
You can create the base URLs via API using this endpoint.
This endpoint only generates the Base URL, also known as a Signed Base. In order to generate images using the Base URL you will need to append encrypted URL parameters as described in the Signed URL documentation.

Endpoints
	post	/v2/templates/:uid/signed_bases
	get	/v2/templates/:uid/signed_bases

The signed base object
Attributes
	uid stringThe unique ID for this object.
	base_url stringThe Base URL for this signed base.
	example_url stringAn example live signed url using this base with dummy text / images.

Sample Object
{
 "created_at": "2022-11-10T09:51:54.369Z",
 "uid": "KL754AzeNDqyJDXq2g",
 "base_url": "https://ondemand.bannerbear.com/signedurl/KL754AzeNDqyJDXq2g/image.jpg",
 "example_url": "https://ondemand.bannerbear.com/signedurl/KL754AzeNDqyJDXq2g/image.jpg?modifications=W3sibmFtZSI6ImltYWdlX2NvbnRhaW5lcl9yZWN0YW5nbGVfMiIsImltYWdlX3VybCI6Imh0dHBzOi8vY2RuLmJhbm5lcmJlYXIuY29tL3NhbXBsZV9pbWFnZXMvd2VsY29tZV9iZWFyX3Bob3RvLmpwZyJ9LHsibmFtZSI6InRleHRfY29udGFpbmVyXzMiLCJ0ZXh0IjoiR2VuZXJhdGVkIE9uIERlbWFuZCJ9XQ&s=57db158642394e5006ec561a7aab5110c4ec4b81fc1646dd94c502d9f88d3886"
}

Create Signed Base
Parameters
	No parameters

	post	/v2/templates/:uid/signed_bases

Sample Request
fetch('https://api.bannerbear.com/v2/templates/:uid/signed_bases', {
 method: 'POST',
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List Signed Bases
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/templates/:uid/signed_bases

Sample Request
fetch(`https://api.bannerbear.com/v2/templates/${UID}/signed_bases`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Projects
You can create, retrieve and list projects via the API if you are using a Master API Key. These keys are created at the account level and are not associated with an individual project.
This is useful for building deeper implementations with Bannerbear where you need to create projects dynamically.

Endpoints
	post	/v2/projects
	get	/v2/projects/:uid
	post	/v2/projects/:uid/hydrate
	get	/v2/projects

The project object
Attributes
	uid stringThe unique ID for this object.
	name stringThe name of this project.
	self stringThe permalink to this object.

Sample Object
{
 "name": "My First Project",
 "created_at": "2023-04-17T05:31:47.953Z",
 "self": "https://api.bannerbear.com/v2/projects/vY7qXEd1ngzP8GAr3Q",
 "uid": "vY7qXEd1ngzP8GAr3Q",
 "templates": 3,
 "image_proxy" : false,
 "web_sessions" : false
}

Create a project
Parameters
	name stringrequiredThe name of the new project.
	image_proxy booleanEnable or disable the project image proxy.
	web_sessions booleanEnable or disable the project web sessions.

	post	/v2/projects

Sample Request
var data = {
 "name" : "New Project",
 "image_proxy" : true,
 "web_sessions" : false
}
fetch('https://api.bannerbear.com/v2/projects', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve a project
Parameters
	uid stringrequiredThe project uid that you want to retrieve.

	get	/v2/projects/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/projects/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Hydrate a project
Hydrating a project will copy all templates from a source project into the project with the specified uid. Both projects must be under the same account.
Alternatively you can specify an array of template IDs if you want to import only specific templates into a project. Templates must all have the same parent account as the target project.
Parameters
	source string The project uid you want to copy templates from.
	templates list The template uids you want to copy.

	post	/v2/projects/:uid/hydrate

Sample Request
var data = {
 "source" : "vY7qXEd1ngzP8GAr3Q"
}
fetch('https://api.bannerbear.com/v2/projects/:uid/hydrate', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

List all projects
Parameters
	page integerquery stringThe page of results you would like to retrieve. The API returns 25 items per page.

	get	/v2/projects

Sample Request
fetch('https://api.bannerbear.com/v2/projects', {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Utilities
pdf / join

You can join multiple PDF files together into a single PDF using this endpoint.

Endpoints
	post	/v2/utilities/pdf/join
	get	/v2/utilities/pdf/join/:uid

The object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	status stringThe status of join: pending, completed or failed
	joined_pdf_url stringURL to the joined PDF
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "status": "completed",
 "pdf_inputs": [
 "https://images.bannerbear.com/direct/wBpLjEMXNj6zNmPak0/requests/000/017/506/830/LWXrA1qRoQvVOvkvQypMJegBj/4e3b3e303f8ff9caae87ed68bed15c18df448ce1-compressed.pdf",
 "https://images.bannerbear.com/direct/wBpLjEMXNj6zNmPak0/requests/000/017/506/845/9e2VGL0qn6VPWoDXYEAv5mxr1/80360378d620b6fd490c9db0bb2720d4a84a61c8-compressed.pdf",
 "https://images.bannerbear.com/direct/wBpLjEMXNj6zNmPak0/requests/000/017/506/856/BjdZ0l7VAYA7N3P763Kn1DLqe/400b91737a51d520a5a237de2cc91f136413b6e6-compressed.pdf"
],
 "created_at": "2022-03-30T04:33:32.556Z",
 "webhook_url": null,
 "webhook_response_code": null,
 "uid": "4GKN5JERxblWjd3mAM",
 "self": "https://api.bannerbear.com/v2/utilities/pdf/join/4GKN5JERxblWjd3mAM",
 "joined_pdf_url": "https://images.bannerbear.com/join_pdfs/nPVv2dkMEL9Z3bp4Ay/4GKN5JERxblWjd3mAM/joined.pdf"
}

Join PDF files
Parameters
	pdf_inputs list requiredA list of PDF URLs to join.

	post	/v2/utilities/pdf/join

Sample Request
var data = {
 "pdf_inputs": [
 "https://images.bannerbear.com/direct/wBpLjEMXNj6zNmPak0/requests/000/017/506/830/LWXrA1qRoQvVOvkvQypMJegBj/4e3b3e303f8ff9caae87ed68bed15c18df448ce1-compressed.pdf",
 "https://images.bannerbear.com/direct/wBpLjEMXNj6zNmPak0/requests/000/017/506/845/9e2VGL0qn6VPWoDXYEAv5mxr1/80360378d620b6fd490c9db0bb2720d4a84a61c8-compressed.pdf",
 "https://images.bannerbear.com/direct/wBpLjEMXNj6zNmPak0/requests/000/017/506/856/BjdZ0l7VAYA7N3P763Kn1DLqe/400b91737a51d520a5a237de2cc91f136413b6e6-compressed.pdf"
],
}
fetch('https://api.bannerbear.com/v2/utilities/pdf/join', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve joined PDF file
Parameters
	uid stringrequiredThe join uid that you want to retrieve.

	get	/v2/utilities/pdf/join/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/utilities/pdf/join/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Utilities
pdf / rasterize

You can rasterize a PDF file using this endpoint. It turns a PDF into a flat JPG and PNG, with configurable DPI. This is useful for generating large JPG / PNG files suitable for printing.

Endpoints
	post	/v2/utilities/pdf/rasterize
	get	/v2/utilities/pdf/rasterize/:uid

The object
Attributes
These attributes are populated by Bannerbear. All other attributes of the object are set by the user at the time of creation.
	uid stringThe unique ID for this object.
	status stringThe status of rasterization: pending, completed or failed
	image_url_png stringURL to the rasterized PNG
	image_url_jpg stringURL to the rasterized JPG
	webhook_response_code integerThe HTTP response code received by the webhook_url.

Sample Object
{
 "url": "https://images.bannerbear.com/direct/qm8Gx0MOW5EMBlae2v/requests/000/013/795/081/ZwVbKlDe9Y8N7LD068moa3jPM/0d40c07fe204b04edaaeb3ad36aeda919b251caa.pdf",
 "status": "completed",
 "dpi": 300,
 "created_at": "2022-01-21T06:04:06.637Z",
 "uid": "P8XANz2er9lky4WG65",
 "self": "https://api.bannerbear.com/v2/utilities/rasterizations/P8XANz2er9lky4WG65",
 "image_url_png": "https://images.bannerbear.com/rasterizations/nPVv2dkMEL9Z3bp4Ay/P8XANz2er9lky4WG65/image.png",
 "image_url_jpg": "https://images.bannerbear.com/rasterizations/nPVv2dkMEL9Z3bp4Ay/P8XANz2er9lky4WG65/image.jpg"
}

Rasterize a PDF
Parameters
	url stringrequiredThe URL to the PDF to rasterize.
	dpi integerThe desired DPI of the final image, up to 300.
	webhook_url stringA url to POST the full Rasterization object to upon completion.

	post	/v2/utilities/pdf/rasterize

Sample Request
var data = {
 "url" : "https://www.myserver.com/sample.pdf"
}
fetch('https://api.bannerbear.com/v2/utilities/pdf/rasterize', {
 method: 'POST',
 body: JSON.stringify(data),
 headers: {
 'Content-Type' : 'application/json',
 'Authorization' : `Bearer ${API_KEY}`
 }
})

Retrieve rasterized PDF
Parameters
	uid stringrequiredThe rasterization uid that you want to retrieve.

	get	/v2/utilities/pdf/rasterize/:uid

Sample Request
fetch(`https://api.bannerbear.com/v2/utilities/pdf/rasterize/${UID}`, {
 method: 'GET',
 headers: {
 'Authorization' : `Bearer ${API_KEY}`
 }
})

